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ABSTRACT 
This paper seeks to increase our understanding on the fluid mechanics and heat transfer in a transitional 
mixed convection flow between two vertical plates. Direct numerical simulation by the spectral method, 
with a weak formulation, is used to solve the transient 3-D Navier-Stokes equations and energy equation. 
Initial disturbances consist of the finite-amplitude 2-D Tollmien-Schlichting wave and two 3-D oblique 
waves. The transition phenomena in a mixed-convection flow can be significantly different from the 
isothermal flow. Disturbance competitions among different modes are also found to be different from those 
known for an isothermal flow. In a mixed-convection flow, there exist thresholds for the low-mode Fourier 
waves. The intensified vortices are concentrated left of the central surface between the two plates. Hairpin 
vortices are formed with high Ri. Based on the flow visualization, the λ vortices are found to be staggered 
on the surfaces parallel to the plates. The Ri number seems to be the main parameter governing the 
transition mechanism. The Nu number is found to increase during transition. 

KEYWORDS Heat transfer Spectral method Weak formulation Navier-Stokes Tollmien-Schlichting wave λ vortices 

INTRODUCTION 

The instabilities responsible for the early stages of transition to turbulence in wall-bounded 
shear flows are now, quantitatively, well understood. The first step, a linear stage with small 
disturbances, is dominated by slowly growing Tollmien-Schlichting waves propagating in the 
streamwise direction, and the development of these waves is described quite accurately by the 
classical linear stability theory. The landmark experiment of Schubauer and Skramstad1 provided 
the confirmation of Tollmien-Schlichting waves in the Blasius boundary layer. Similar demons­
trations for heated boundary layer have been furnished by Strazisar, Reshotko and Prahl2. 

The second stage is characterized by the instability of finite amplitude, streamwise Tollmien-
Schlichting waves in response to infinitesimal, oblique disturbances (Krist and Zang3). It is also 
called the secondary instability. This type of instability induces strong vortical flow patterns in 
the boundary layer, the basic element of which is the λ vortex. These vortices possess regular 
patterns which are caused by the fundamental and subharmonic instabilities. The fundamental 
instability is called the K-type transition after Klebanoff, Tidstrom and Sargent4. Craik5 and 
Herbert6 have identified two classes of subharmonic instability, known as the C-type and H-type, 
respectively. The K-type transition is characterized by the growing of the (kx= 1, kz= 1) wave. 
kx and kz label the Fourier wave numbers in the numerical representations with respect to the 
fundamental wave-numbers in the streamwise and spanwise directions, respectively. Spalart7 

used random white noises as the initial disturbances and indicated that either the fundamental 
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or the subharmonic types of breakdown can appear depending on the amplitude of noises. Only 
the K-type transition is considered in this study because the effects of buoyancy on transition 
of flows are the major concerns and the effects of disturbance amplitude have been studied by 
Spalart et al.7,8. Therefore the initial disturbances selected in this analysis correspond to those 
which were known to induce K-type transition in isothermal flows. 

Mucoglu and Chen9 studied the linear stability of mixed-convection flows adjacent to a vertical 
isothermal surface. A forced flow was assumed to be perturbed by buoyancy effects. Later, Chen 
and Mucoglu10 analyzed the linear wave instability of mixed flows over horizontal surfaces. The 
mixed convection studies in the past are limited to linear analyses for either forced convection 
perturbed slightly by buoyancy effects or buoyancy driven flow perturbed by the forced 
convection. There is no single study which addresses the two effects that are of the same order 
of magnitude. All the studies of mixed convection stability in the past were conducted by either 
the linear stability theory or the weakly nonlinear stability theory. Analyses on higher nonlinear 
stages in the transition process of a mixed-convection flow, have not been reported in the 
literature. Gebhart et al.11 gave a most recent comprehensive review of the literature on 
buoyancy-driven and mixed-convection flows. 

In the last decade, direct numerical simulations based on spectral methods, have been used 
to study the detailed structures of flows in the nonlinear stage of transition. The typical examples 
are given by Spalart and Yang8 and Zang and Hussaini12 for Blasius flows; and Orszag and 
Kells13 and Krist and Zang3 for flat channel flows. In the work of Zang and Hussaini12, heat 
transfer is also included for the purpose of transition control. The rest of the transition studies 
were all limited to the isothermal flows. In this paper, we intend to explore the transition process 
in mixed-convection flows by direct numerical simulations. There are three objectives in this study: 

1 Investigate the disturbance competition patterns among different Fourier modes in transition 
flows. 

2 Study the vortices development as related to large-scale structures using particles visualization 
technique during the nonlinear transition stage. 

3 Understand the heat transfer mechanisms during the transition stage. 

COMPUTATIONAL METHODOLOGY 

Problem formulation 
The flow investigated is the transitional mixed-convection flow between two parallel long 

vertical surfaces separated by a distance 2d. The system configuration is shown in Figure 1. The 
temperatures of the two plates are kept at T1 and T2 respectively. The X-coordinate is aligned 
with the streamwise direction, the Y-coordinate is the direction perpendicular to the walls and 
the Z-coordinate is the spanwise direction. The buoyancy force is aligned with the forced flow 
in the streamwise direction. Viscous dissipation is excluded because we are not dealing with very 
high Prandtl number fluids. Viscous dissipation needs to be included only when highly viscous 
oil is considered. The governing equations for an incompressible flow, non-dimensionalized 
by d (half width of the channel) and the isothermal laminar parabolic centerline velocity Uo, 
can be written as: 
Continuity: 

Momentum: 
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Energy: 

where is the dimensionless pressure gradient responsible for the forced flow and ī is a unit 
vector in the X-direction. is the Reynolds number, where v is the fluid kinematic 

viscosity. Ri is the Richardson number, defined as and g is the gravitational 

acceleration constant. , is the reference temperature. T is the instantaneous fluid 

temperature. The Boussinesq approximation is used here and ß is the thermal expansion 
coefficient. is the Prandtl number and aT is the thermal diffusivity. 

Physically the flow is driven by a combination of the pressure gradient and the buoyancy force. 
The pressure gradient driven flow is maintained usually by a pump and is termed the forced 
flow. The buoyancy driven flow is caused by the temperature gradient resulting from the unequal 
temperatures maintained on the two plates. The Richardson number measures the strength ratio 
of the buoyancy driven flow to the forced flow. 

For the energy equation, it is more meaningful to rewrite (3) in terms of θ = T - Tm, where Tm 
is the corresponding temperature profile of the steady, laminar flow which is assumed as the 
system condition at the beginning of the transition process. The advantage of using θ is twofold. 
First, it allows one to concentrate on the characteristics of temperature variations resulting from 
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the three-dimensional transition mechanism and to avoid obscurity caused by the laminar mean 
profile. Second, when heat transfer is involved, there is usually a net increase in the mean 
temperatures along the streamwise direction. When periodic conditions in x is applied, i.e., mean 
temperature is independent of x and parallel, contradiction will occur if T is used instead of θ. 
A similar concept was adopted by Spalart and Yang8 for transition study of boundary layer 
flow, where a new velocity variable, the difference between the actual velocity and the mean 
velocity, was defined to account for the increase of mean velocity with the streamwise coordinate 
as a result of the net inflow of mass into the boundary layer. Ghaddar et al.14 also defined a 
new temperature variable for the study of heat transfer in grooved channels. They adopted the 
spectral-element method and imposed periodic condition in the streamwise direction. In the 
current study, (3) is rewritten in terms of θ and given as follows: 

where θ = T - Tm and V is the y-component velocity. Tm is the initial laminar flow temperature 
profile and it is derived based on steady, two-dimensional, and fully-developed assumptions. 
These assumptions lead Tm to become a function of y only. More details of its derivation is given 
later in the paper. 

The boundary conditions are stated in the following: 
Ū(x,y,z,t) = Ū(x+Lx,y,z,t) (5) 
Ū(x,y,z,t) = Ū(x,y,z + Lz,t) (6) 

Ū(x,l,z,t) = 0 (7) 
Ū(x,-l,z,t) = 0 (8) 

θ(x,y,z,t) = θ(x+Lx,y,z,t) (9) 
θ(x,y,z,t) = θ(x,y,z + Lz,t) (10) 

θ(x,l,z,t) = 0 (11) 
θ(x,-l,z,t) = 0 (12) 

where Lx and Lz are the domain lengths in the x and z directions. The boundary conditions at 
the solid walls (y = 1,-1) are the non-slip conditions and the prescribed wall temperature (T2,T1) 
respectively. By subtracting the Tm from T, θ will have zero boundary conditions since Tm satisfied 
the T1 and T2 boundary conditions. Periodic conditions are applied in the x and z directions. The 
condition of periodicity resorts to the parallel flow assumption, which is necessary because of 
the extreme resolution demands in the streamwise direction. Under the current computational 
resources, it is not yet feasible to tackle the entire spatial problem. The use of a new temperature 
variable, θ, certainly helps reduce the difference resulting from the parallel assumption. It has 
been demonstrated that numerical simulations based on the parallel flow assumption achieve 
good agreement with the detailed flow field structure of experimental data (Zang and Hussiaini12). 
The periodicity assumption also implies that a temporal instablity rather than a spatial instability 
is studied. 

The initial conditions of the velocity and temperature of the laminar mean flow are Ūm and 
Tm respectively which are derived later in details. The initial conditions of the velocity disturbances 
consist of a finite-amplitude 2-D Tollmien-Schlichting wave and two 3-D oblique waves as 
shown below: 

The 2-D Tollmien-Schlichting wave and two 3-D oblique waves are obtained using the ORRSOM 
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code developed by Lee and Reynold15. In the ORRSOM code, the Orr-Sommefeld equation is 
solved with an input of the steady state mean background flow. Here, we only investigate the 
momentum instability and the thermal instability is not considered. No temperature disturbance 
is added to the flow initially and T equals to Tm. The initial conditions are stated as: 

θ(x,y,z,0) = 0 (14) 
In the above, kx and kz are the streamwise and spanwise wave numbers and are equal to one 
for the K-type transition. We apply the K-type transition initial disturbances and look for any 
deviation from the K-type transition in the mixed-convection environment. Ū2D is the least 
stable two-dimensional eigenfunction. Ū3D,1 and Ū3D,2 are the three-dimensional eigenfunctions 
at (kx,kz) = (1,1),(1,- 1) respectively. Ūm is the initial laminar steady velocity profile and the details 
of its derivation are showon later. Ε2D and ε3D are chosen such that the 2-D wave amplitude is 
11% and the 3-D wave amplitiude is 10% of the mean laminar velocity amplitude, respectively. 
The noise levels are set to be high in order to trigger the formation of nonlinear structures earlier 
(Krist & Zang3). 

First the initial laminar velocity Ūm and temperature Tm need to be determined. The flow can 
be assumed steady, two dimensional and fully developed initially. The fully developed condition 
implies that . The 2-D assumption means , The momentum and energy equations 

can then be simplified as: 

Their solutions can be easily found as: 

It is noted that (17) and (18) represent the velocity and temperature profile, respectively for 
a laminar flow in a long channel where both flow and temperature profiles are considered to 
be fully developed. The Reynolds number based on the corresponding isothermal Poiseuille flow 
center line velocity, which is also called the nominal Reynolds number in this study, is 1500. 
Three Richardson numbers are studied and they are (0.005, 0.01, 0.05). The Reynolds number 
based on the maximum x-component velocity, will be 1875 for Ri = 0.005, 2550 for Ri = 0.01 
and 7880 for Ri = 0.05. All three cases are linearly unstable. The initial x-component velocities 
with respect to each Ri number are shown in Figures 2-4. The buoyancy force causes a favourable 
pressure gradient at the right-hand-side of the channel and induces higher velocity. This is why 
the local maximum Re number is increased once buoyancy effects are included. While at the 
left-hand-side, buoyancy force is in the negative x-direction, which tends to slow down the 
pressure driven forced flow or create a reverse flow if buoyancy force is larger than the pressure 
gradient force at high Richardson numbers. There is no reverse flow formed in Figure 2. In 
Figure 3, the buoyancy induces weak reverse flows. Figure 4 shows a significant reverse flow at 
the left side and the buoyancy also speeds up the flow at the right-hand-side. Reversed flow may 
have a significant impact on the transition. That is the reason why we include cases with some 
reversed flows. It is noted that the flow profiles are totally different from the parabolic profile 
of isothermal flows. 
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Numerical methods 
Direct numerical simulation by the spectral method with a weak formulation was employed 

to solve the governing equations (1), (2) and (4). The concept of spectral methods coupled with 
a weak formulation was first introduced by Leonard16, later Moser et al.17 applied it successfully 
to study the Taylor-Couette channel flow. This method offers the following advantages: increased 
accuracy of a spectral method; an exact implementation of the continuity and boundary 
conditions; simpler time-advance scheme and less storage requirement (Moser et al.17). 

The weak-formulation spectral method has been proven effective by many researchers for the 
Navier-Stokes equation. However, we believe that this paper provides the first report on the use 
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of weak-formulation spectral method for solving coupled momentum and energy equations. 
Details of the weak formulation applied to coupled momentum and energy equations are given 
in Hao18 and thus are not repeated here. 

CODE VERIFICATION 

Momentum equations 
Before the Navier-Stokes equations could be solved directly by computers, the linear stability 

of flows has been studied using the Orr-Somerfeld equations. The Orr-Sommerfeld equation 
was derived by assuming that the disturbance to the flow is infinitesimal and any nonlinear term 
produced by the disturbance is negligible. A direct-numerical simulation code can be verified 
by comparing between the results of the Orr-Sommerfeld equation and those of the direct-
numerical simulations under small disturbances during the linear stage. 

To verify the direct simulation program we developed for the heated channel flows (HCHAN), 
the evolution of an oblique decaying Tollmien-Schlichting wave in a channel was computed. 
The computation was done for Re = 1000, 1500, and 2000. The wave numbers are kx = 1 and 
kz = 1, where the Reynolds number is based on the centerline velocity and channel half width. 
Chebychev polynomials up to the order 32 were used. Initial conditions for the computation 
were obtained from an Orr-Sommerfeld eigenfunction program (Lee and Reynolds15). The 
amplitude of the disturbance was initially set to 10 -5 so linear stability theory was applicable. 
The wave was allowed to evolve for 3.71 dimensionless time units. In Figure 5, the curves for 
the disturbances decaying rates were plotted. Each curve actually represents the almost overlap 
of four curves. These curves are the decay rates of u', v' and w' calculated by the HCHAN and 
the decay rate obtained from ORRSOM. The differences among them are indistinguishable in 
the figure. Three different Reynolds numbers were tested. As expected, the higher the Re is, the 
slower the disturbance decays. At the dimensionless time of 3.71, the decay rate predicted by 
HCHAN was within 0.025% of that obtained from the linear stability theory, and the propagation 
velocity was within 0.02%. 

Moser et al.17 did a similar test for Re = 1500, the difference of the decay rate was within 
0.2% and the propagation velocity was within 0.05% at the dimensionless time of 3.9. Comparing 
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his results to those, it is reasonable to assume that HCHAN would provide the required accuracy 
for the transition study.. 

Energy equation 
The ability of HCHAN to solve the energy equation may be verified by comparing its predicted 

results with the analytical solution for forced laminar convection flows. For a fully-developed 
channel flow with viscous dissipation neglected, the temperature distribution is a linear function 
of the temperature on the two plates. If the initial temperature profile is modified to be different 
from the exact analytical solution by adding random disturbances and the product of Pr and 
Re falls within the range of the unconditionally stable heated flows; the code should force the 
temperature to approach the analytical solution after a certain time integration steps. 

The initial temperature disturbances is randomly chosen. The maxium deviation of the initial 
temperature from the exact solution does not exceed 5%. The temperature profile calculated by 
the HCHAN matches the analytical solution within 0.01% after 150 time steps. The conservation 
of total energy of the computation box is also checked which represents that no artificial energy 
increase or decrease. The Nusselt number predicted by the code for constant heat flux walls 
agrees reasonably well with the published experimental results for a vertical annulus as shown 
in Hao and Chung19. With these, we thought that the energy equation portion is verified. 

RESOLUTION REQUIREMENT 

In the current study, a three-dimensional direct numerical simulation needs approximately 1-9 
s.u. (service unit) on a supercomputer for the transition study. The actual time depends on the 
flow condition. The resolution is very stringent in transition simulation. Poor resolution will 
lead to an artificially chaotic state. In this study, 32 x 52 x 64 is the resolution we used to allow 
the highest spectrum to carry energy less than 10-8. The resolution in the y direction becomes 
more crucial in a mixed-convection flow. It is due to the highly distorted mean velocity profile 
along the y direction as shown in Figure 2-4. With a parabolic profile in the forced-convection 
or isothermal flow, the mean velocity is relatively smooth and less resolution in the y direction 
is allowed. The resolution in the spanwise direction should also be high enough to allow spanwise 
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structure to be simulated correctly. To reach the strongly spanwise structure stage, resolution 
above 64 x 128 x 64 is recommended. This set of value is obtained from our experience of 
simulating flow at the highly nonlinear stage. We monitor the energy of the highest mode in 
each direction and decide to increase the resolution once the energy is larger than 10-8. In order 
to truthfully simulate the physical mechanism, this type of monitoring must be carried out. In 
this paper, several different sets of physical parameters need to be studied, 32 x 52 x 64 is decided 
to be adopted for each case in order to have conclusion and truthfully follow the physical 
mechanism within the allocated computing time. Higher Ri number will increase the requirement 
of resolution. 

RESULTS AND DISCUSSION 

Disturbance modes competition 
In the study of transition, we are usually concerned with the modes competition of disturbances. 

An easy way to study this, is to measure the energy of each mode. Krist and Zang3 defined the 
energy carried by mode (kx,kz) as: 

where: 
dk = 2 - δk,o 

With the initial disturbance type specified in (13), the K-type transiton is expected to appear in 
an isothermal flow. The K-type transition or the fundamental type of breakdown is characterized 
by the energy gaining mainly of the 3-D (kx = 1,kz = 1) wave. The activity in the z-direction (kz = 1) 
indicates the three-dimensional breakdown structure. In an isothermal flow, the K-type 
breakdown is characterized by the phenomena that the (kx = 1,kz = 1) wave will finally possess 
more energy than the (kx = 1,kz = 0) wave. The rest of the triggered waves except the (kx = 0,kz = 2) 
one, grow initially from zero but either decay or grow at a very slow rate. The (kx = 0,kz = 2) 
wave was found to be the fastest growing wave. In this paper, we are mainly interested in 
knowing how the heat transfer and buoyancy affect the K-type transition. In Figures 6-8, 
disturbance modes competition patterns are plotted for Pr = 0.7 and various Ri of 0.005, 0.01, 
and 0.05. A Prandtl number of 0.7 corresponds to most gaseous fluids while the Richardson 
number represents the strength ratio of buoyancy-driven flow to that of pressure driven. The 
higher the Richardson number the more contribution is due to the buoyancy-driven flows. The 
(kx = 1,kz = 0) wave grows in all the three cases. Noting that the time scale is different in these 
figures, it indicates that the wave gains energy much faster for higher Ri number. The (kx = 1,kz = 1) 
wave is decaying in Figures 6-7. In Figure 8, it decays first and grows again after the dimensionless 
time passes 0.23. It is expected that the (kx = 1,kz = 1) wave will not gain more energy than the 
(kx = 1,kz = 0) wave since the latter is continuously growing in all cases. For K-type transition 
in an isothermal flow, the (kx = 1,kz = 0) wave decays slowly to allow the (kx = 1,kz = 1) wave to 
gain more energy after a certain time. This is the first important effect due to buoyancy which 
seems to suppress the three-dimensional flow development. 

The (kx = 2,kz = 1) and (kx = 0,kz = 1) waves decay at Ri = 0.005 and Ri = 0.01 but grow slowly 
at Ri = 0.05 after an initially decaying period. It seems that the flow could be destabilized with 
increasing buoyancy force. The (kx = 0,kz = 2) wave is continuously growing at all cases. However, 
it is not the fastest growing wave as in the isothermal flow. The interesting thing is that the 
(kx = 2,kz = 0) and (kx = 2,kz = 2) waves show the existence of a threshold for their energy growth 
if the (kx = 1,kz = 0) mode stays at relatively the same energy level. The continuously growing 
2-D (kx = 1,kz = 0) TS wave triggers the growing of different modes disturbances. As the 2-D TS 
wave attains a certain level of energy, the (kx = 2,kz = 0) and (kx = 2,kz = 2) modes are triggered 
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and the thresholds are passed. It is seen that the (kx = 2,kz = 1) and (kx = 0,kz = 1) modes show a 
similar threshold phenomena, their further growth depends on whether the 2-D TS wave reaches 
a certain higher level as evidenced in Figure 8. The fastest growing waves seem to be the 
(kx = 2,kz = 0) or the (kx = 2,kz = 2) wave. The magnitude of the Ri number is indeed an important 
factor in the transition process. High buoyancy force destabilizes the flow and the continuously 
growing 2-D TS wave triggers different mode disturbances to break through their thresholds. 
All the disturbances are growing at Ri = 0.05 which is the highest buoyancy level in the current 
analysis. It indicates that the flow is strongly unstable at Ri = 0.05. With a strong buoyancy, the 
flow is unstable to all the disturbance waves. The unstable flow will induce fast growing 
disturbances and the disturbance themselves will change the flow pattern. Based on the calculated 
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information, one may expect that a full-developed mixed-convection flow hardly exists. This is 
a new result to us since there is no such equivalence in isothermal flows. Yao20 found that the 
mixed-convection flow in a vertical pipe is unstable to disturbance with relatively low magnitudes 
by the linear stability theory. He predicted that the flow will never become full-developed. The 
flows he studied are at very low Re numbers. The direct numerical simulation study here also 
confirms his views in the nonlinear transition region with much higher Re numbers and different 
Ri numbers. 

We were wondering whether the patterns of modes competition would be different for other 
Pr numbers. We next study the cases of ordinary water (Pr = 10.0) and liquid metal (Pr = 0.001) 
The Ri number is kept at 0.05. Comparing Figures 9, 10 with Figure 8, it may be concluded that 
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there is no significant difference for various Pr numbers. The actual numerical values for the 
energy were further compared and the differences are on the order of 10 -4 and the corresponding 
velocity differences are on the order of 10-2. Based on the numerical results, we may summarize 
as follows: 

1 The (kx = 1,kz = 0) Tollmien-Schlchting wave is an unstable disturbance mode in a mixed-
convection flow even without any 3-D disturbances imposed. 

2 Thresholds exist for certain disturbances to grow further. 
3 The transition mechanism mainly depends on the Ri number and weakly depends on the 

Pr number. 
The first statement implies that the 2-D TS wave itself is unstable. In any isothermal flat 

channel flow, the 2-D TS wave will decay if 3-D disturbances are not imposed into the flow. 
Here the 2-D TS wave is unstable and gains more energy from the mean flow as the flow 
develops. It will induce large-scale 2-D periodic motions without 3-D disturbances. The second 
statement says that the growing 2-D TS wave will trigger different disturbances mode to grow 
also through nonlinear interactions. Each mode has its own threshold. The third statement 
indicates that the transition process mainly depends on the order of magnitude of the buoyancy 
force and the Pr number is only a minor factor. It can also be explained through the fact that 
transition is rather sensitive to the mean flow profile. Higher Ri number flow possesses a stronger 
inflection point in the mean flow profile and makes the flow more unstable. The initial mean 
flow profile in this study depends on the Ri number rather than the Pr number since constant 
wall temperature boundary conditions was assumed. The Pr number affects the temperature 
variations of the flow in a slow diffusion way. The transition process is basically a momentum 
exchange flow phenomena, in which the imposition of external forces in the momentum equation 
will result in direct effects. The Prandtl number measures the ratio of momentum diffusion 
effectiveness to that of the heat diffusion. The heat diffusion is generally a slower process and 
its effects on the flow is indirectly through the energy equation. This may explain why the Pr 
number turns out to be a less important parameter in the heated transition process. 

Gebhart et al.11 claimed that the abundant experimental data for flows subject to both natural 
and controlled disturbances indicate that a simple sinusoidal form of the most highly amplified 
disturbances is retained during transition. The flow geometry they adopted is a single vertical 
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plate. The mixed convection vertical transition flow between two plates we study here, also 
shows this same character. In our 3-D direct numerical simulation, the 2-D (kx= 1,kz = 0) is 
amplified when the flow is evolving and retained all the way through nonlinear transition stage. 
With the K-type initial condition, no K-type isothermal transition pattern was observed. 

Streamwise vortex contour 
The streamwise vortex development is an important mechanism in transition. The streamwise 

vortex redistributes tangential momentum across the flow. The function of an experimentally 
observed double vortex system in a natural convection external boundary layer was explained 
by Gebhart et al.11. The outer vortex convects higher-velocity fluid outward and inward from 
the quiescent ambient. The inner vortex does just the opposite by convecting fluids from one 
side to the other side. However, the flow between two vertical plates has no quiescent ambient 
environment and the temperature boundary conditions at the two plates also cause both 
favourable pressure gradient and adverse pressure gradient in the flow. 

For an isothermal flow, the streamwise vortex at the laminar stage, keeps a regular pattern 
without being lifted. At the early nonlinear stage, the streamwise vortices will be lifted but the 
intensity is low. At the later transition stage, the flow will be separated right on the critical layer 
which is induced by the strong enhancement of the streamwise vortex with high intensity. We 
are interested in observing how the streamwise vortices develop in a mixed-convection flow. 

In Figures 11-13, the streamwise vortex contours are plotted for (Pr = 0.7,Ri = 0.005), 
(Pr = 0.7,Ri = 0.01) and (Pr = 0.7,Ri = 0.05) cases. The streamwise vortex contour plots for the 
three cases are not at the same time. It is because we terminate each simulation when the 
resolution (32 x 52 x 64) is not sufficient to truthfully follow the real physical mechanism. The 
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time period of the higher Ri number case will be shorter. The streamwise locations of those 
plates were chosen such that the vortex interactions were most active. From Figure 11, we find 
that the double vortex system formed near the left of the central surface. The tangential momentum 
across the walls is redistributed in the double vortex system. We note that the double vortex 
system can be formed in different places between the plates. The double vortex systems are 
located close to the centerline between the walls. The vortex system can also be formed near 
the walls. These vortices are usually in pairs, for each pair, their circulations are relatively 
identical in strength but opposite in sign. A vortex convects lower-velocity fluid outward and 
the higher-velocity fluid inward. There will be a corresponding one doing the opposite. A vortex 
also convects fluids from one side to the other side. There will be a corresponding one going 
the other way. This type of motion enhances the possibility of layer separation. This layer will 
be positioned between the inner and outer vortex. In Figure 11, it is located at about y = -0.25. 
This layer is usually called the critical layer. Flow will be separated on this layer first and are 
lifted. A hairpin vortex will be formed and finally turbulence burst appears. In Figure 12, the 
streamwise vortex contour for Ri = 0.01 is shown. Higher buoyancy force can destabilize the 
flow if it causes an adverse pressure gradient. Comparing Figure 11 with Figure 12, the magnitude 
of the vortex increases and the shape of the contour becomes narrower and less regular as Ri 
is increased. The streamwise vortex contour at every higher Ri number is plotted in Figure 13. 
Except the large increase in the magnitudes, the vortices are lifted and ready to form the hairpin 
vortice. The critical layer is very close to the point of separation. The increase of the Ri number 
leads to an earlier transition and possible turbulence bursting as indicated by the tendency of 
the paired vortices to form the hairpin vortices. 

From Figures 11-13, it is clear that the right half of the vortex structures are depressed. This 
may be explained as that the buoyancy force at the right-half of the channel is in the direction 
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of the streamwise momentum force, which induces a favourable pressure gradient. It has the 
effect of laminarizing the flow as the formation of streamwise vortices and the lifting tendency 
are suppressed. On the contrary, on the left-half of the channel, the vortices are lifted up and 
the vorticities are intensified because the buoyancy force gives the flow an adverse pressure 
gradient, destabilizing the flow. The higher the Ri number is, the stronger the pressure gradient 
is induced. The centerline is the interface between the favourable and adverse pressure gradient. 
This special setup is responsible for the vortex concentration near the centerline. The possibility 
of using buoyancy in transition control was shown by the linear stability theory. Here, we 
demonstrate that the transition can still be controlled at the early nonlinear stage by the buoyancy. 

With the results from the disturbance modes competition, we conclude that the transition is 
mildly dependent on the Pr number and mainly on the Ri number. We also compare the vortex 
contours among (Ri = 0.05,Pr = 10.0), (Ri = 0.05,Pr = 0.001) and (Ri = 0.05,Pr = 0.7) cases. The 
results further confirmed the earlier conclusion that Ri number is the major factor in the 
mixed-convection transition process. 

Flow visualization 
Vizualizations of the flow using passive particles will be discussed next. This is similar to 

smoke or dye visualization in an experiment. The motion of particles is computed using linear 
interpolation in space and the Euler scheme in time. Figure 14 shows the initial position of the 
particles. Eight spanwise lines of 64 particles each are released at regular intervals in x. The 
height of particle release is adjusted so that the particles are near the critical layer when breakdown 
occurs. This is important; by keeping the particles in phase with the flow structures one greatly 
enhances the correspondence between the particle-line patterns and these flow structures. The 
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particles cannot be placed exactly on the critical layer, because this layer moves up and down 
as the flow evolves. 

For each case, the distribution of particles at the end of the simulation is plotted. Figure 14 
shows the particles at (Pr = 0.7,Ri = 0.005). Looking at the picture from the point of view of the 
z-axis, we find that the large-scale motion is oriented in the x-direction. It is the growing 2-D 
TS wave that induces the regular periodic motion in the streamwise direction. This periodic 
motion is more substantial than the corresponding one in an isothermal flow because the 2-D 
TS wave there decays after a certain time. From the point of view of the x-axis, we see the 
particle lines are lifted up and taken down. The particles below the surface are indicated by the 
dark portions on the tubes. It is the vortices that stretch the particles. The projection of the 
particles from the y-axis is shown in Figure 15. The λ vortex is clearly indicated and the vortex 
pattern is a staggered one. This pattern is different from the pattern of the fundamental and 
subharmonic λ vortex pattern in an isothermal flow. The well-aligned pattern of K-type λ vortices 
is not observed even with the initial K-type transition input. Spalart and Yang8 used white noise 
as the initial condition and they found that the actual transition breakdown pattern is more 
likely a mixture of the well-aligned K-type and staggered pattern. It seems that in a 
mixed-convection flow, the K-type breakdown pattern does not exist either. Particles are placed 
in the flow field initially in the form of eight spanwise lines of 64 particles each. These lines are 
spaced equally in the x-direction. In the y-direction, 52 layers were used and only the most 
interesting patterns which are usually found near the critical layers, are shown here. From 
Figure 15, we can also see the particles are moving toward the higher-vorticity region. The 
enhancement and distorted streamwise vortex indeed cause a regular vortex pattern on the x-z 
surface. The visualization of particles for the cases of (Pr = 0.7,Ri = 0.01) and (Pr = 0.7,Ri = 0.05) 
are given in Figures 16-19. In Figures 16-17, the 3-D visualizations all show the regular periodic -
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motions in the x-direction. The simulations were ended at different time and the 2-D TS wave 
speeds are different for each case because the initial mean velocity profiles are different. These 
are the reasons why they are not in phase in Figures 14,16,17. The large-scale regular periodic 
motions exist in all cases. What needs to be noted is the strong variation in the y-direction 
shown in Figure 17. This is an indication of the enhancement of the vortex lift-up and distortion 
of the streamwise vortex. It can be expected that the hairpin vortex will be formed shortly. Due 
to the computing resources limitation, we are unable to conduct the simulations up to the 
turbulence bursting region. The projections of particles on the x-z planes corresponding to 
Figures 16-17 are plotted in Figures 18-19. In Figures 18-19, the X vortices are staggered too. 
This further confirms our earlier conclusion that the transition breakdown pattern is more likely 
a staggered one in the mixed-convection flow. 

Any detailed comparison among the patterns in the three different Ri number cases will not 
be valid to tell the effects of the buoyancy because the critical layer is almost impossible to 
predict. The effects of buoyancy is best shown if the flow stuctures of the critical layer could be 
displayed by the particles. In our simulations, we first release the particles at 52 different positions 
in the y-direction. Visualizing the particle patterns on these surfaces can roughly tell where the 
critical layer is most likely located. The surface having the most strong vortices was then 
determined as the surface on which particle patterns are finally plotted. This technique of searching 
for the critical layer definitely requires significant amount of computing resources but it is 
important to visualize the particles near the critical layer. 

For different Pr. numbers, we did not notice any significant variations on the particle 
visualization patterns. For constant wall temperature boundary conditions, the Pr number is 
definitely not an important parameter in the transition process. 

Heat transfer coefficient 
The heat transfer mechanism in a transitional flow has not been clearly understood in the 

past. Most of the data were collected by experiments and, in general, they are not consistent. 
This inconsistence is expected since transition is a complicated phenomena. The factors affecting 
the mechanisms include the type of disturbances, flow geometry, heating conditions, and flow 
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properties. Especially the disturbances are very difficult to control in an experimental measurement. 
Here we are trying to provide an accurate study based on a fixed geometry, fixed initial 
disturbances, and heating boundary conditions. The Nu number is defined as , where h 
is the heat transfer coefficient and k is the thermal conductivity. The h is evaluated as 
sign where Tb is the bulk temperature defined as .. There is a 

local Nu number at each collocation point on the walls. In this study, the Nu number shown 
is an average over the x-z planes at the walls of the computation box. 

First, we present the ratio of the calculated Nu number during transition to its initial value. The 
Nu number was written every two time steps. The initial value here means the Nu number at 
the second time step for each case. The period of a time step is varied from one step to another 
step and from one case to another case (i.e. (Pr,Ri)). This is because the period of any time step 

is calculated from the Co number. This implies that the initial Nu numbers for each case are 

not at the same time. We define Nu ratio to be in order to let every curve start from 

ratios are given in Table 1. Num means Nu number at the laminar state. With this 

table, the instantaneous Nu number of a specified case can be obtained by referring to the 

figure and the table. 
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Table 1 

Pr 

0.001 
0.7 
10 
0.7 
0.7 

Ri x 103 

50 
50 
50 
10 
5 

Left Wall 

1.000121 
0.999998 
0.999971 
0.996843 
0.983296 

Right Wall 

1.000059 
1.000193 
1.000092 
1.002787 
1.011356 

By plotting the ratios, we are able to show explicitly the enhancement of heat transfer resulting 
from the unsteady transition process in a mixed-convection flow. Figure 20 shows the Nu number 
ratio for the right wall with three Ri numbers of 0.005, 0.01, and 0.05; and a fixed Pr of 0.7. In 
general, the transition Nu number is larger than that of the initial laminar flow and the 
enhancement increases with the Ri number. The exception is that the ratio goes slightly below 
unity until 1.5 dimensionless time and then it starts to rise continuously for Ri number of 0.005. 
In order to explain the Nu number results, we need to single out the two dominant mechanisms 
which control the convection heat transfer process near the right wall boundary. The first is the 
favourable pressure gradient induced by the buoyancy which imparts a positive streamwise motion 
as shown in Figure 2-4. The second mechanism is the increased flow which enhances the heat 
transfer, in the meantime, also hinders the transition process or relaminarizes the transition 
process. These two mechanisms usually compete with each other and the relaminarization is 
only significant for small Ri number flows, for example, the Nu number ratio initially decreases 
slightly below unity for Ri = 0.005, which is due to the effect of relaminarization. Other cases in 
Figure 20 are all dominated by the increased streamwise flow which induces higher local Reynolds 
number and, therefore, enhances the transition process. For the average Nu number on the left 
wall boundary, the buoyancy force induces an adverse pressure gradient which weakens the forced 
flow and even causes a reverse flow for Ri = 0.05 (see Figure 4). This adverse pressure gradient 
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helps produce a steeper velocity gradient across the channel width which promotes the transition 
process. The weakened streamwise flow or the reverse flow generally reduces the Nu number. 
Again the two opposing mechanisms are competing with each other and, for most parts, the 
mechanisms of transition prevail as far as the heat transfer is concerned. This is shown in 
Figure 21 where the Nu number ratio is greater than unity for all three cases during the entire 
period of numerical simulation. Especially for Ri = 0.05, the transition enhancement dominates 
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over the reduction due to weakened streamwise flow. The ratio of the Nu number rises sharply 
above unity which indicates that the transition process proceeds faster and more intensively, 
even though the streamwise is reversed which is supposed to reduce the Nu number. For 
Ri = 0.005, and 0.01, the two opposing mechanisms are of the similar order of magnitude. The 
ratio of the Nu number is greater than unity and rises slowly for both cases. The ratio for 
Ri = 0.01 is slightly smaller than that of Ri = 0.005, which indicates that the effects of the weakened 
streamwise flow is slightly more influencing for Ri = 0.01. 

Comparing the results between the right wall and left wall, the enhancement of heat transfer 
is more intensive on the right wall which is thought to be the results of increased streamwise 
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flow induced by the buoyancy force. Again we need to investigate the effects of the Pr number 
on the Nu number ratio for both walls. Following the same trend, the order of magnitude 
of enhancement is definitely higher for the right wall. For both walls, the enhancement is the lowest 
for the liquid metals (Pr = 0.001). This is believed to be caused by the extremely high thermal 
conductivity of the liquid metal which tends to minimize the convection mechanisms due to 
transition and buoyancy forces. Heat conduction also tends to stabilize the instability in the 
system. For the right wall, it is shown in Figure 22 that the gaseous fluids (Pr = 0.7) benefit the 
most in a transition flow. This is probably due to relatively higher viscosity of the liquids (Pr = 10). 
It is well known that viscosity tends to stabilize the flow and therefore the transition process in 



SIMULATIONS OF TRANSITION IN MIXED CONVECTIVE FLOWS 421 

the liquids (Pr = 10) is slower and less intense than the gaseous fluids (Pr = 0.7). This explains 
that the Nu number ratio is the highest for the gaseous fluids (Pr = 0.7) in Figures 22 and 23. 

CONCLUSION 

The transition phenomena in a mixed-convection flow can be significantly different from those 
in the isothermal flow. An initial K-type disturbances may not produce the K-type transition 
as in an isothermal flow. Instead the 2-D TS waves grow continuously and trigger the lower 
mode waves to grow. There exist thresholds in the lower-mode growing process. The 2-D TS 
wave (kx = 1,kz = 0) extracts energy from the mean flow and triggers the lower-mode disturbances 
once itself gains enough energy. It is found that all disturbances waves grow in a very short 
time. This implies that a fully-developed mixed-convection flow may not exist between two 
vertical plates. Those energetic disturbances keep taking energy from the mean flow and a 
fully-developed flow can hardly exist. 

The streamwise vortex pattern is different from that in an isothermal flow. The streamwise 
vortices are concentrated near the left of the centerline between the walls. The vortex system is 
distorted and sometimes lifted up as the Ri number is increased. As the Ri number approaches 
0.05, a hairpin vortex pattern is most likely to form. Visualization of the flow by particles indicates 
that the λ vortices are formed. Their pattern is a staggered one and no well-aligned isothermal 
K-type breakdown pattern was observed. Large-scale periodic motions are found in the 
streamwise direction. 

In general, the calculated Nu number is greater than that of the initial laminar flow. The ratio 
of the former to the latter increases with time and the rate of increase is proportional to the Ri 
number, which is a result of the competition between the nonlinear transition mechanism and 
the buoyancy induced streamwise motion of relaminarization. The enhancement of heat transfer 
is more intense at the right wall boundary were the buoyancy induced flow is in the streamwise 
direction. Near the left wall, the buoyancy tends to weaken the forced flow or even induce a 
reverse flow, which reduces the Nu number. For various Pr numbers which represent three fluid 
groups, the gaseous fluids (Pr = 0.7) seem to possess the highest heat transfer enhancement in 
the transitional mixed-convection flow. The liquid metals have the lowest heat transfer increase 
which is mainly due to the stabilizing effect of the high thermal conductivity value. The liquids 
(Pr = 10) fall below the gases because the higher viscosity of the liquid tends to stabilize the flow. 

Transition can be delayed due to the favourable pressure gradient induced by the buoyancy 
force. Transition can also be promoted if buoyancy induces an adverse pressure gradient. It is 
also found that the buoyancy can control the transition even at the nonlinear stage. The 
effectiveness of transition control by buoyancy, relies on the existence of a mixed-convection 
flow. The option of using buoyancy to control the transition will not be applicable in a 
forced-convection flow. 
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